Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517690

RESUMO

The Bay of Bengal (BoB) spans >2.2 million km2 in the northeastern Indian Ocean and is bordered by dense populations that depend upon its resources. Over recent decades, a shift from larger phytoplankton to picoplankton has been reported, yet the abundance, activity, and composition of primary producer communities are not well-characterized. We analysed the BoB regions during the summer monsoon. Prochlorococcus ranged up to 3.14 × 105 cells mL-1 in the surface mixed layer, averaging 1.74 ± 0.46 × 105 in the upper 10 m and consistently higher than Synechococcus and eukaryotic phytoplankton. V1-V2 rRNA gene amplicon analyses showed the High Light II (HLII) ecotype formed 98 ± 1% of Prochlorococcus amplicons in surface waters, comprising six oligotypes, with the dominant oligotype accounting for 65 ± 4% of HLII. Diel sampling of a coherent water mass demonstrated evening onset of cell division and rapid Prochlorococcus growth between 1.5 and 3.1 div day-1, based on cell cycle analysis, as confirmed by abundance-based estimates of 2.1 div day-1. Accumulation of Prochlorococcus produced by ultradian growth was restricted by high loss rates. Alongside prior Arabian Sea and tropical Atlantic rates, our results indicate Prochlorococcus growth rates should be reevaluated with greater attention to latitudinal zones and influences on contributions to global primary production.


Assuntos
Prochlorococcus , Synechococcus , Água do Mar , Prochlorococcus/metabolismo , Ecótipo , Baías , Synechococcus/genética , Fitoplâncton/genética
2.
Environ Microbiol ; 25(11): 2118-2141, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37311449

RESUMO

The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients-which have low temperature variation (27-29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104 cells ml-1 , predominantly HLII, whereas LLII and 'rare' ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104 cells ml-1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml-1 , surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto 'rare' picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.


Assuntos
Clorófitas , Ecossistema , Humanos , Salinidade , Baías , Água do Mar/microbiologia , Fotossíntese , Fitoplâncton , Clorofila
3.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220058, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150200

RESUMO

Interactions between the upper ocean and air-ice-ocean fluxes in the Southern Ocean play a critical role in global climate by impacting the overturning circulation and oceanic heat and carbon uptake. Remote and challenging conditions have led to sparse observational coverage, while ongoing field programmes often fail to collect sufficient information in the right place or at the time-space scales required to constrain the variability occurring in the coupled ocean-atmosphere system. Only within the last 10 years have we been able to directly observe and assess the role of the fine-scale ocean and rapidly evolving atmospheric marine boundary layer on the upper limb of the Southern Ocean's overturning circulation. This review summarizes advances in mechanistic understanding, arising in part from observational programmes using autonomous platforms, of the fine-scale processes (1-100 km, hours-seasons) influencing the Southern Ocean mixed layer and its variability. We also review progress in observing the ocean interior connections and the coupled interactions between the ocean, atmosphere and cryosphere that moderate air-sea fluxes of heat and carbon. Most examples provided are for the ice-free Southern Ocean, while major challenges remain for observing the ice-covered ocean. We attempt to elucidate contemporary research gaps and ongoing/future efforts needed to address them. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

4.
Sci Rep ; 13(1): 3910, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890189

RESUMO

Monami is the synchronous waving of a submerged seagrass bed in response to unidirectional fluid flow. Here we develop a multiphase model for the dynamical instabilities and flow-driven collective motions of buoyant, deformable seagrass. We show that the impedance to flow due to the seagrass results in an unstable velocity shear layer at the canopy interface, leading to a periodic array of vortices that propagate downstream. Our simplified model, configured for unidirectional flow in a channel, provides a better understanding of the interaction between these vortices and the seagrass bed. Each passing vortex locally weakens the along-stream velocity at the canopy top, reducing the drag and allowing the deformed grass to straighten up just beneath it. This causes the grass to oscillate periodically even in the absence of water waves. Crucially, the maximal grass deflection is out of phase with the vortices. A phase diagram for the onset of instability shows its dependence on the fluid Reynolds number and an effective buoyancy parameter. Less buoyant grass is more easily deformed by the flow and forms a weaker shear layer, with smaller vortices and less material exchange across the canopy top. While higher Reynolds number leads to stronger vortices and larger waving amplitudes of the seagrass, waving amplitude is maximized at intermediate grass buoyancy. All together, our theory and computations develop an updated schematic of the instability mechanism consistent with experimental observations.

5.
Phys Rev Lett ; 125(15): 158002, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095596

RESUMO

Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium. We provide a simple theoretical framework that embodies this feedback mechanism in a multiphase model for flow through a frangible porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing. This allows us to delineate the conditions under which splitting and/or coalescing branched network formation is favored, with potential implications for both understanding and controlling branching in soft frangible media.

6.
Sci Rep ; 10(1): 5582, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221314

RESUMO

The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic 'Martin curve' flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of the particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.

7.
ISME J ; 14(1): 288-301, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31624350

RESUMO

Mechanistic description of the transition from aerobic to anaerobic metabolism is necessary for diagnostic and predictive modeling of fixed nitrogen loss in anoxic marine zones (AMZs). In a metabolic model where diverse oxygen- and nitrogen-cycling microbial metabolisms are described by underlying redox chemical reactions, we predict a transition from strictly aerobic to predominantly anaerobic regimes as the outcome of ecological interactions along an oxygen gradient, obviating the need for prescribed critical oxygen concentrations. Competing aerobic and anaerobic metabolisms can coexist in anoxic conditions whether these metabolisms represent obligate or facultative populations. In the coexistence regime, relative rates of aerobic and anaerobic activity are determined by the ratio of oxygen to electron donor supply. The model simulates key characteristics of AMZs, such as the accumulation of nitrite and the sustainability of anammox at higher oxygen concentrations than denitrification, and articulates how microbial biomass concentrations relate to associated water column transformation rates as a function of redox stoichiometry and energetics. Incorporating the metabolic model into an idealized two-dimensional ocean circulation results in a simulated AMZ, in which a secondary chlorophyll maximum emerges from oxygen-limited grazing, and where vertical mixing and dispersal in the oxycline also contribute to metabolic co-occurrence. The modeling approach is mechanistic yet computationally economical and suitable for global change applications.


Assuntos
Água do Mar/microbiologia , Aerobiose , Anaerobiose , Clorofila/metabolismo , Desnitrificação , Modelos Biológicos , Nitritos , Nitrogênio/metabolismo , Oxigênio/metabolismo
8.
Sci Adv ; 4(2): e1701504, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29507874

RESUMO

Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

9.
Curr Biol ; 27(1): R15-R16, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073013

RESUMO

Ocean surface warming is resulting in an expansion of stratified, low-nutrient environments, a process referred to as ocean desertification [1]. A challenge for assessing the impact of these changes is the lack of robust baseline information on the biological communities that carry out marine photosynthesis. Phytoplankton perform half of global biological CO2 uptake, fuel marine food chains, and include diverse eukaryotic algae that have photosynthetic organelles (plastids) acquired through multiple evolutionary events [1-3]. While amassing data from ocean ecosystems for the Baselines Initiative (6,177 near full-length 16S rRNA gene sequences and 9.4 million high-quality 16S V1-V2 amplicons) we identified two deep-branching plastid lineages based on 16S rRNA gene data. The two lineages have global distributions, but do not correspond to known phytoplankton. How the newly discovered phytoplankton lineages contribute to food chains and vertical carbon export to the deep sea remains unknown, but their prevalence in expanding, low nutrient surface waters suggests they will have a role in future oceans.


Assuntos
Carbono/metabolismo , Fitoplâncton/citologia , Plastídeos/genética , Evolução Biológica , Mudança Climática , Ecossistema , Oceanos e Mares , Fitoplâncton/fisiologia , Plastídeos/classificação , Plastídeos/fisiologia , RNA Ribossômico 16S/genética
10.
Ann Rev Mar Sci ; 8: 161-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26394203

RESUMO

Life in the ocean relies on the photosynthetic production of phytoplankton, which is influenced by the availability of light and nutrients that are modulated by a host of physical processes. Submesoscale processes are particularly relevant to phytoplankton productivity because the timescales on which they act are similar to those of phytoplankton growth. Their dynamics are associated with strong vorticity and strain rates that occur on lateral scales of 0.1-10 km. They can support vertical velocities as large as 100 m d(-1) and play a crucial role in transporting nutrients into the sunlit ocean for phytoplankton production. In regimes with deep surface mixed layers, submesoscale instabilities can cause stratification within days, thereby increasing light exposure for phytoplankton trapped close to the surface. These instabilities help to create and maintain localized environments that favor the growth of phytoplankton, contribute to productivity, and cause enormous heterogeneity in the abundance of phytoplankton, which has implications for interactions within the ecosystem.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Ecossistema , Oceanos e Mares , Fotossíntese , Fitoplâncton/química , Fitoplâncton/fisiologia , Água do Mar/química
11.
Science ; 348(6231): 222-5, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25814062

RESUMO

The export of particulate organic carbon (POC) from the surface ocean to depth is traditionally ascribed to sinking. Here, we show that a dynamic eddying flow field subducts surface water with high concentrations of nonsinking POC. Autonomous observations made by gliders during the North Atlantic spring bloom reveal anomalous features at depths of 100 to 350 meters with elevated POC, chlorophyll, oxygen, and temperature-salinity characteristics of surface water. High-resolution modeling reveals that during the spring transition, intrusions of POC-rich surface water descend as coherent, 1- to 10-kilometer-scale filamentous features, often along the perimeter of eddies. Such a submesoscale eddy-driven flux of POC is unresolved in global carbon cycle models but can contribute as much as half of the total springtime export of POC from the highly productive subpolar oceans.


Assuntos
Ciclo do Carbono , Carbono , Fitoplâncton/crescimento & desenvolvimento , Água do Mar , Movimentos da Água , Oceano Atlântico , Modelos Teóricos , Compostos Orgânicos , Material Particulado , Estações do Ano
13.
Science ; 337(6090): 54-8, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22767922

RESUMO

Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime warming of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by eddy-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by warming.


Assuntos
Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Água do Mar , Movimentos da Água , Oceano Atlântico , Clima , Modelos Biológicos , Modelos Teóricos , Robótica , Estações do Ano , Luz Solar , Temperatura
14.
Science ; 320(5875): 448; author reply 448, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18436758

RESUMO

McGillicuddy et al. (Reports, 18 May 2007, p. 1021) proposed that eddy/wind interactions enhance the vertical nutrient flux in mode-water eddies, thus feeding large mid-ocean plankton blooms. We argue that the supply of nutrients to ocean eddies is most likely affected by submesoscale processes that act along the periphery of eddies and can induce vertical velocities several times larger than those due to eddy/wind interactions.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Água do Mar , Movimentos da Água , Vento , Animais , Oceanos e Mares , Plâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...